Integration of PO with other OBO ontologies

Chris Mungall LBL

OBO Foundry

- Multiple ontologies designed to interoperate
- Granularities
 - subcellular
 - cellular
 - organismal
 - population and environment
- Perspective
 - anatomical / static
 - processual / dynamic
- Phenotype
 - "normal" / wild type
 - "abnormal" disease and mutant phenotypes

Why integrate?

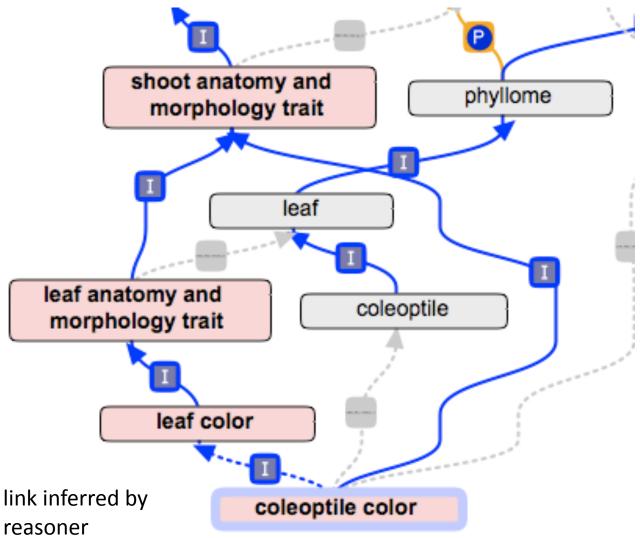
- Ontology maintenance
 - reuse the work of others
 - building block approach
- Data discovery
 - Queries across multiple databases

PO - Get to know your neighbors

- Vertical
 - CL (generic cell types)
 - CARO
- Incoming
 - GO (development)
 - TO (plant trait)
- Outgoing
 - GO (system processes)
 - CHEBI (chemical entities)
 - PRO (protein)
 - Taxonomy (NCBI?)

Integration with CL

- Some PO classes (like plant cell) are subtypes of generic cell types (like "cell")
- PO responsibility
 - Generate a bridge file to CL
 - Include OBO-unique synonyms
 - can be generated from xrefs
 - Will most likely be rather small!
- CL responsibility
 - Generate the multispecies cell ontology
 - amalgam of generic CL, fly CL, plant CL, ...


Integration with plant trait TO (incoming)

- Many phenotypes described anatomically
- Phenotype ontologies can include definitions that use PATO ontology of qualities
 - mammalian_phenotype_xp
 - human_phenotype xp
 - ascomycetes_phenotype_xp
 - plant_trait_xp

Christopher Mungall, Georgios Gkoutos, Cynthia Smith, Melissa Haendel, Suzanna Lewis, and Michael Ashburner. Integrating phenotype ontologies across multiple species. *Genome Biology*, 11(1):R2, 2010

http://www.berkeleybop.org/people/cjm/Mungall-GO-JBI-2010.pdf

plant_trait_xp

obtaining plant_trait_xp

 http://www.obofoundry.org/cgi-bin/ detail.cgi?id=plant_trait_xp

- maintained in obo sf cvs
 - obo/phenotype/plant_trait/
 - plant_trait_xp.obo
 - plant_trait_xp_mireot.obo

Integration with GO (incoming)

- GO covers development
 - E.g. pollen tune growth
- Many such GO classes are being logically defined using external ontologies
 - biological_process_xp_uber_anatomy
 - biological_process_xp_plant_anatomy
 - biological_process_xp_fungal_anatomy

Christopher J. Mungall, Michael Bada, Tanya Z. Berardini, Jennifer Deegan, Amelia Ireland, Midori A. Harris, David P. Hill, and Jane Lomax. **Cross-Product Extensions of the Gene Ontology**. *Journal of Biomedical Informatics* 2010 http://www.berkeleybop.org/people/cjm/Mungall-GO-JBI-2010.pdf

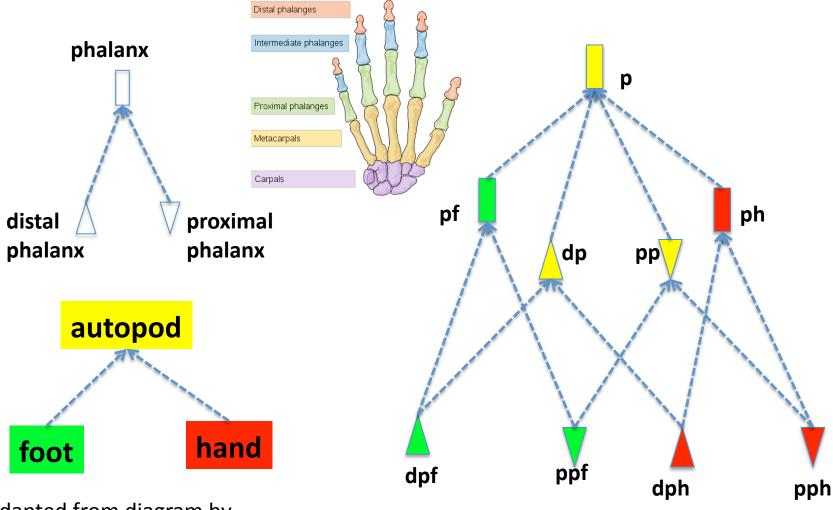
Integration with GO (outgoing)

- GO has biological process classes relevant to plant functioning
 - photosynthesis
 - respiratory gaseous exchange
 - response to wounding
- These could be used to define or to add information about PO classes
 - see also CL

Integration with taxonomies

- PO currently includes 77 sensu terms
- These should be replaced by terms with nontaxonomic differentiae
- taxonomic information should be added as non-defining links
 - only_in_taxon
 - never_in_taxon

 every arabidopsis female gametophyte is a embryo sac


•END

Logical definitions for PO

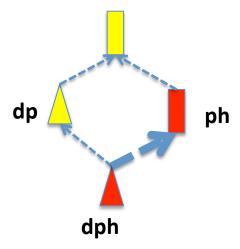
Why make definitions computable?

- Doing the work all by yourself is hard, boring and error prone
- Automate using reasoning
- Bonus:
 - Makes the definitions easier for humans
 - Enables better visualization

Biology is modular, most ontology classes are compositional

(adapted from diagram by David Hill and Joel Richardson)

Logical definitions


- Genus-differentia form
 - Text definition is genus-differentia form
 - Distal phalanx of hand:
 - "A distal phalanx that is part of a hand."
 - or "A distal phalanx[ID:2] that is part of a hand[ID:3]."
 - OWL:
 - 'distal phalanx of hand' EquivalentTo 'distal phalanx' and part_of some hand
 - OBO-Format
 - [Term]
 - id: ID:1 ! distal phalanx of hand
 - intersection of: ID:2 ! distal phalanx
 - intersection_of: part_of ID:3 ! hand

Editing logical definitions

- OBO-Edit
 - Cross-product tab
 - Genus
 - Differentia
 - Parent Editor
 - select links to make them 'intersections'
- Protégé 4
 - Equivalent Classes
 - Enter expression

Using a reasoner

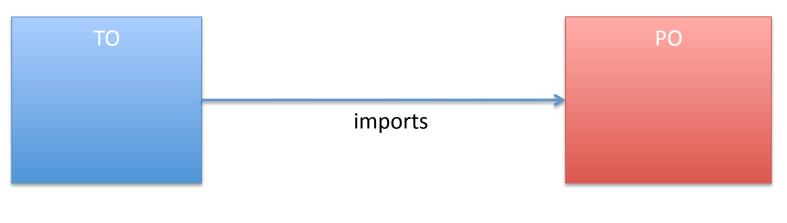
- Given:
 - 'distal phalanx of hand' EquivalentTo 'distal phalanx' and part_of some hand
 - 'phalanx of hand' EquivalentTo phalanx and part_of some hand
 - 'distal phalanx' is_a phalanx
- A reasoner can infer that:
 - 'distal phalanx of hand' is_a 'phalanx of hand'

Uses of a reasoner

- Ontology authoring
 - Time saving
 - Automatically inferring is_a polyhierarchy
 - Quality Control
 - detecting inconsistencies
- Data integration and discovery
 - Less applications... so far

Reasoners

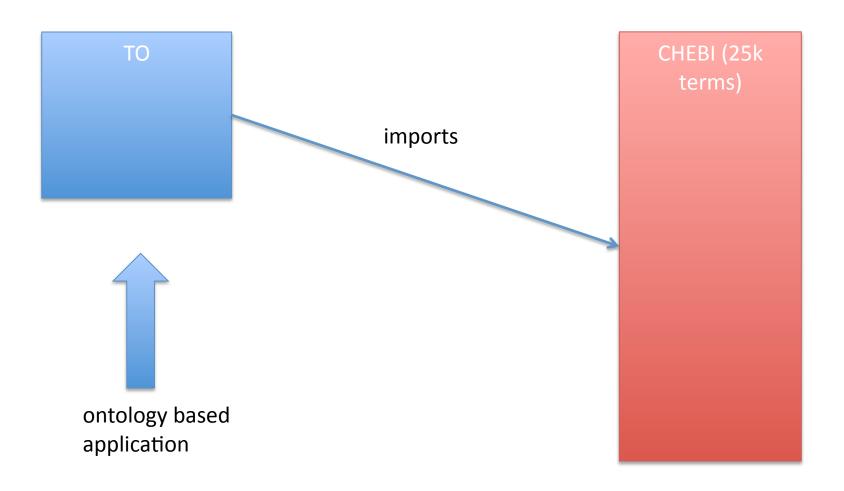
- OBO-Edit
 - Rule Based Reasoner
- OWL Reasoners (Protégé 4)
 - Pellet
 - FaCT++
 - HermiT

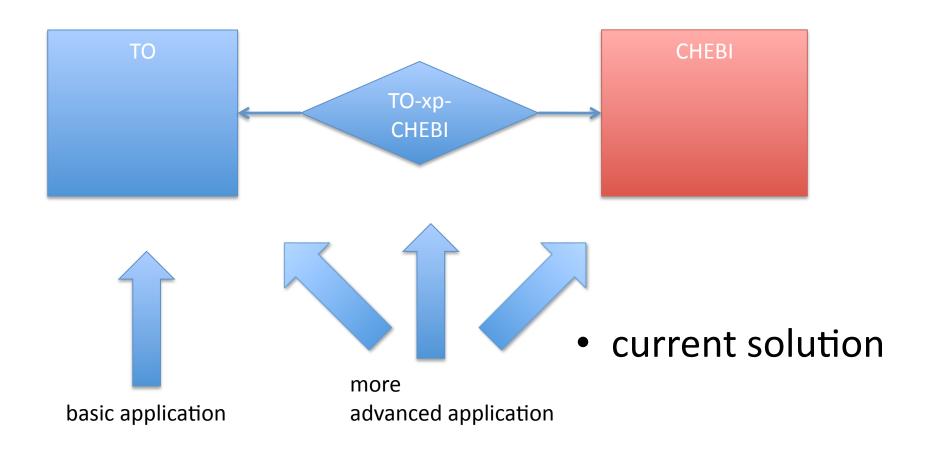

Logical definitions for PO

- Most will be internal
 - E.g.
 - tuber cortex = stem cortex that is part of some tuber
 storage parenchyma
- Some will be external
 - E.g. lactifer PO:0005053
 - References external ontology

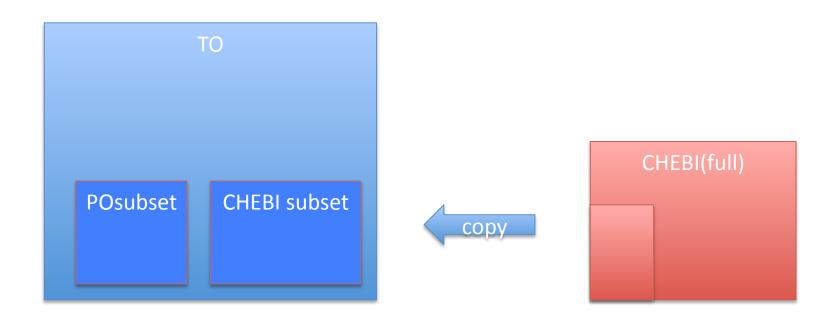
Modularity and external ontologies

- Modularity principle:
 - Multiple orthogonal ontologies
 - Use classes from O¹ as building blocks in O²
 - E.g.
 - pollen tube growth
 - anucleate cell
- BUT: Can pose problems for large external ontologies
 - CHEBI
 - PRO


Import

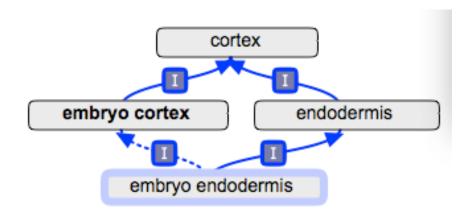

ontology based application

- application can choose to follow import chain
 - if it doesn't, then there are dangling references
- the full *import closure* can be large!


Import

Bridge files

MIREOT - Minimal Information for Retrieval of External Ontology Terms



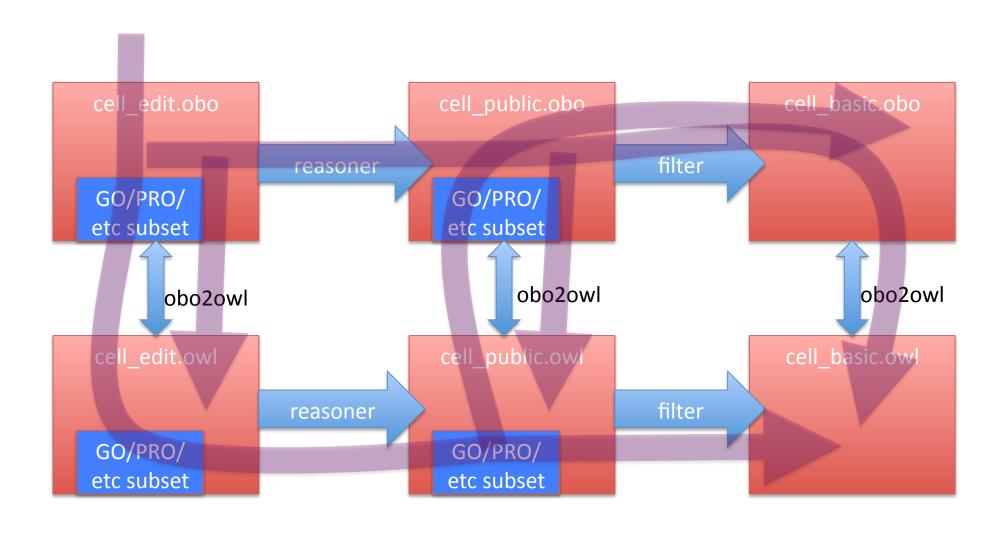
 current solution used by OBI, PRO, hemo-CL

 ontology author "MIREOT"s in subset of external ontology

Deploying po_anatomy

- Separate editors version from deployed version
 - generate deployed version automatically from editors version
 - editors version is single inheritance
 - deployed version is read only
 - deployed version has inferred polyhierarchy

Next steps


- PO is already specifying logical definitions in the main ontology
 - these all look good
 - these are all part_of differentia so far
- Will we need other ontologies for definitions?
- TO is far more dependent on external ontologies
 - MIREOT approach will be necessary

•END

Deploying cell.obo

- Typical User
 - inferred links materialized
 - external ontology links removed
- Advanced User
 - asserted links only
 - external links present
 - minimal external classes included

Ontology publishing pipeline

Summary

- Many ontologies are seeing the benefits of using computable definitions
 - e.g. fly anatomy
 - GO slow to adopt, lots of legacy issues to work out
- Better to employ them from the outset
 - DC_CL
 - Hemo_CL

•END

Shortcut relations

Relations used

- hemo-CL uses
 - capable_of
 - lacks_part (Ceusters et al)
 - has_plasma_membrane_part (Masci et al)
 - lacks_plasma_membrane_part (Masci et al)
 - has_high_plasma_membrane_amount (Masci et al)
 - has_low_plasma_membrane_amount (Masci et al)

Pros and cons of these relations

Objections

- Artificial
 - We should only use a very minimal set of relations from RO, too many relations are bad (why?)
- Serious
 - Information is hidden from reasoner (example coming later)

Strengths

- Simple
- Intuitive
- Makes repeated use easier

Short vs long

- What does has_plasma_membrane_part mean?
- Shortcut relationship:
 - C has_plasma_membrane_part some M
- Better expressed in OWL as:
 - C has_part some ('GO:plasma membrane' and has_part some M)
 - uses only core relations
 - fully expresses semantics
 - repetitive pattern -> tedious, RSI
 - nested expressions are hard!
 - difficult in OE
 - difficult to load into databases
 - make reasoning slower

You can have your cake and eat it

Smuggling OWL into obo-format

[Typedef]

id: has_plasma_membrane_part

name: has_plasma_membrane_part

is_a: has_part

expand_expression_to: "has_part_some (GO:0005886 and has_part some ?Y)"

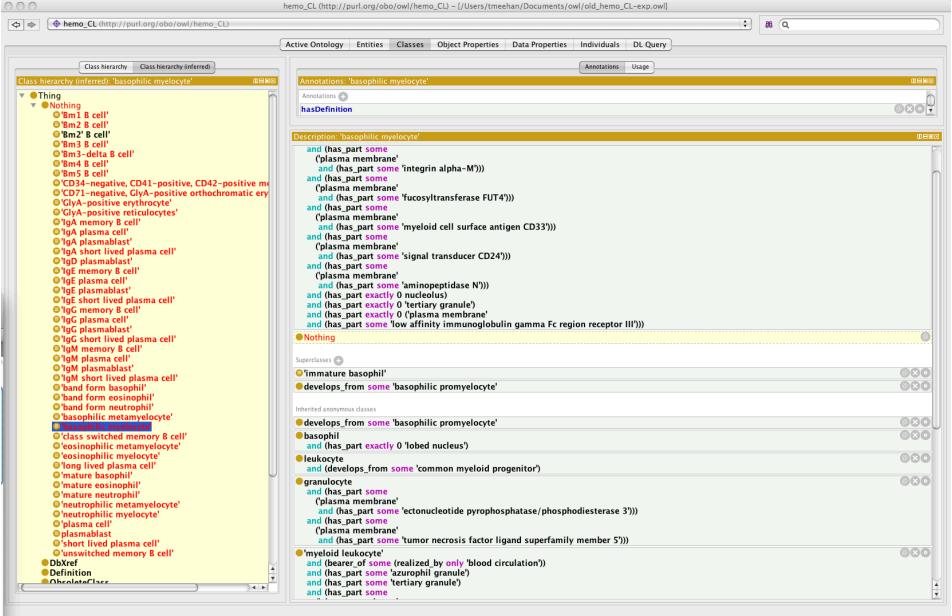
instructions on how to expand the shortcut relation

Does all this make a difference? YES: A real life example

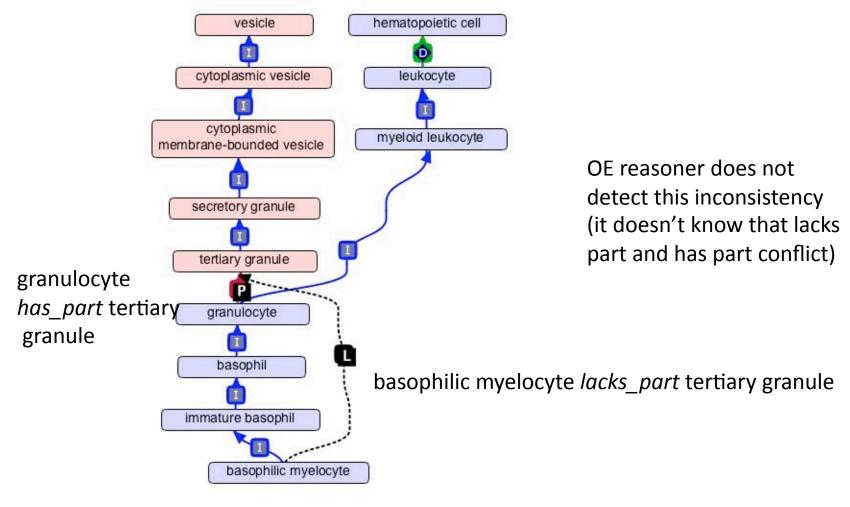
```
[Term]
name: basophilic myelocyte
relationship: lacks_part GO:0070820 ! tertiary granule
...
[Typedef]
id: lacks_part
expand_expression_to: "has_part exactly 0 ?Y"
```

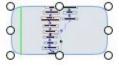
obo2owl

Class


label: basophilic myelocyte SubClassOf: lacks_part value

GO 0070820


Class


label: basophilic myelocyte
SubClassOf: has_part exactly 0

GO 0070820

hemo CL inconsistency

Status

- Current implementation is prototype
 - Being used for hemo_CL
 - Will be rewritten to use OWLAPI
- Awaiting comments from OWL community
 - Could be useful for OWL/Protégé4 community in general

Alternatives

- OWL allows relation chains
 - Some expressible in OBO
 - E.g.
 - X has_part M, M is_a plasma_membrane, M has_part Y
 X has_plasma_membrane_part Y
- Not sufficient for our purposes

Summary of shortcut formalism

Shortcut relations

- easier for non-OWL heads to understand
- save on repetitive strain injury
- easier to visualize
- can be consumed by basic ontology applications and databases

Expanded form

- machine code for reasoners
- can be hidden from users (even in P4)
- purists may prefer this

Another application: Connecting cells to GO BP

- we want to be able to say something like "a function of the osteoclast is bone resorption GO:0045453". How?
 - osteoclast participates_in GO:0045453
 - wrong not every osteoclast is doing this
 - osteoclast has function GO:0045453
 - sorry GO:0045453 is not a BFO function!
 - We could make a biological function ontology paralleling GO, and use this
 - osteoclast has_function GO_BF:to_resorb_bone
 - we could, I guess, but that would be madness

Solution: use a shortcut

- OWL and BFO purist way:
 - osteoclast bearer_of some (bfo:function and realized_by only GO:bone resorption)
 - or:
 - osteoclast bearer_of some (bfo:function and realized_by only (part_of some GO:bone resorption))
 - but who wants to write this all the time?
- Shortcut
 - capable_of → bearer_of some (realized_by only ?Y)

Summary: capable_of

- This is the relation the majority of users of the ontology would see
- Optional expansion in OWL
 - not clear the extent to which expansion will help with reasoning
 - Reasoning with unexpanded form in obo and owl may be fine
- Open question
 - do we need sub-relations for functions vs roles

Comparison with fly_anatomy

- uses has_function_in
- slightly more specific (the cell must have a function realized by the process, rather than just play a role)
- in David's talk?
- No strong use case for expanding the relation thus far

Ongoing issues

- How do we expand:
 - has_high_plasma_membrane_amount
 - has_low_plasma_membrane_amount
- Use populations?
 - → has_part some (population and has_grain ?Y and larger_than ref_pop_0001124)
 - unwieldy, still doesn't capture full semantics
 - perhaps fine to leave as documented but unexpanded for now
- We can express:
 - has_low_plasma_membrane_amount disjointFrom lacks part

Summary

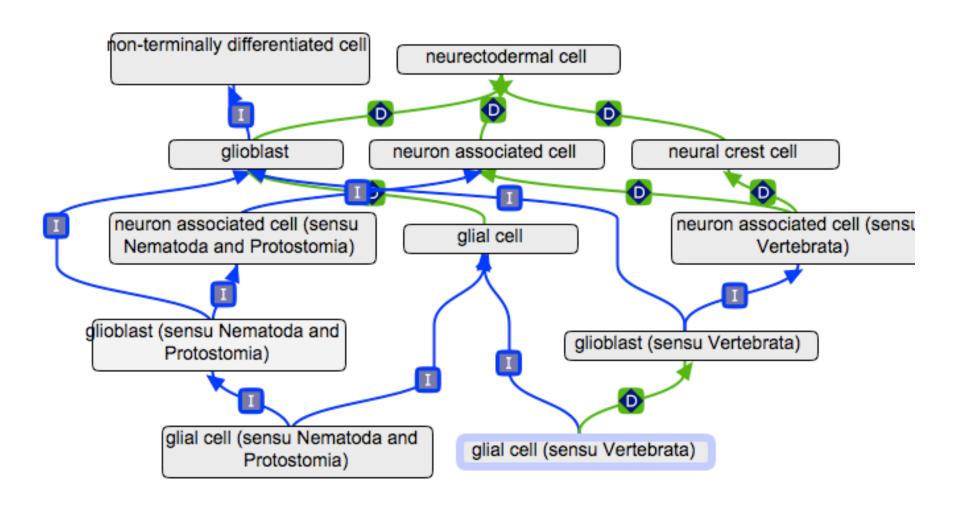
- Shortcut relations proving useful for hemo_CL
 - Also being used in
 - fly_anatomy (neurons) -- later today
 - NIF cell->anatomy
- Ontology authors and biologist users focus on high level shortcut relations
 - division of labor

•END

Sensu

The demise of sensu in GO

- GO 1999ish
 - cell wall (sensu fungi)
 - cell wall (sensu plant)
- GO post 2006
 - cell wall, beta-glucan/chitin
 - cell wall, cellulose and pectin
 - Differentia based on non-taxonomic criteria
 - e.g. structural


Taxa in GO

- only_in_taxon
 - mammary gland development only_in_taxon
 Mammalia
 - glial cell differentiation only_in_taxon Metazoa
- never_in_taxon
 - odontogenesis never_in_taxon Aves

Fixing CL

Original information on why sensu qualifiers added not in ontology

Example

CL in AOs

- The following AOs include representations of cell types
 - Fly anatomy (FBbt) (includes CL xrefs)
 - Zebrafish anatomy (ZFA) (includes CL xrefs)
 - Adult human (FMA)
 - Plant (PO)
- Mouse anatomy (MA) does not
- Why replicate?
 - Relationships to gross-anatomy
 - 'Too specific' for CL

Current approach

- Some AOs maintain xrefs to CL
- Sometimes CL has xrefs to AOs
 - E.g. FMA
- We treat the ss AOs classes as subclasses
 - not ideal

Proposed approach

- No duplication
 - OBO-Foundry ontologies MIREOT CL
 - Reuse classes
 - ss AOs can include cell types that are genuinely only characterized in that species
 - Exception: PO?
- Relationships to AO of appropriate level of specificity

•END

Use of CL in GO

using CL in the GO

- Ontology authoring
 - CL classes used in logical definitions
 - astrocyte differentiation
- Annotation
 - Post-composition

CL in GO pre-composed classes

- Bridge files
 - biological_process_xp_cell (603)
 - cellular_component_xp_cell (26)
 - cellular_component_links_cell (28)
- Reasoning
 - pre-ARRA
 - multiple inconsistencies (CL tracker, list)
 - post-ARRA
 - asserted links in GO now match inferred links

Post-composition

- 'column 16'
 - E.g. occurs_in(CL:0001234)
 - Formal semantics in gene associations
 - <col5> and R some Y
- Already in use
 - MGI
 - Pombe
 - (but not using CL)

Challenges with post-composition

- Reconciling pre- and post-
 - Scenario:
 - Joe annotates to apoptosis & occurs_in(cardiac cell)
 - GO introduces pre-composed "cardiac cell apoptosis"
 - We want to include Joe's annotation here
 - Solution: solved using standard reasoning techniques
- Term enrichment, semantic similarity
 - Term enrichment is one of the main uses of GO
 - Can CL enhance this?
 - Can use LCS techniques developed by DL researchers (1990spresent)
 - Algorithms solved (for certain cases)
 - implementations lacking!

Timelines

- Phase I
 - concentrate on pre-composition
 - working with annotators to explain postcomposition
- Phase II
 - Full support of post-composition in AmiGO

•END